B501 Assignment 2 Part I Enrique Areyan

Due Date: Friday, January 27, 2012 Due Time: 11:00pm

- 1. (15 points) Let M be the finite automaton $(Q, \Sigma, \delta, q_0, F)$. Define the function
 - $\delta^*:Q\times\Sigma^*\to Q$ as follows:
 - $\delta^*(q,\varepsilon) = q$
 - $\delta^*(q, wa) = \delta(\delta^*(q, w), a)$, where $w \in \Sigma^*$ and $a \in \Sigma$

(Recall that $L(M) = \{ w \in \Sigma^* | \delta^*(q_0, w) \in F \}$, so δ^* is the recursive transition function of M.)

Prove that for each x and y in Σ^* ,

$$\delta^*(q, xy) = \delta^*(\delta^*(q, x), y)$$

Hint: Use structural induction.

Proof:

- 1. Base Case: let w = ee (the empty string followed by the empty string). Then, $\delta^*(q, w) = \delta^*(q, ee) = \delta(\delta^*(q, e), e) = \delta(q, e) = q$ On the other hand, $\delta^*(\delta^*(q, e), e) = \delta^*(q, e) = q$. It holds.
- 2. Inductive step: let z = xya, where $x, y \in \Sigma^*$ and $a \in \Sigma$. Then,

$\delta^*(q,z) =$	$\delta^*(q, xya)$	definition of z
=	$\delta(\delta^*(q,xy),a)$	definition of δ^*
=	$\delta(\delta^*(\delta^*(q,x),y),a)$	hypothesis
=	$\delta^*(\delta^*(q,x),ya)$	definition of δ^* . Q.E.D.

- 2. (15 points) Give deterministic finite automata accepting the following languages over the alphabet (0,1).
 - (a) The set of all strings ending in 011. Solution:

(b) The set of all strings with "011" as a substring. Solution:

(c) The set of all strings such that every block of 4 consecutive symbols contains at least two 1's.Solution: each state represent the memory of the previous last four characters read by the machine.

All state are finals except for $X = \{1000, 0010, 0100\}.$

3. (5 points) Describe in English the sets accepted by the following DFA.

Solution: The DFA accepts the empty string, any number of a's and any number of a's followed by at least one b.

4. (15 points) Let $\Sigma = \{0, 1\}$, and let L be the set of strings that contain an even number of 0's and an odd number of 1's. Use the product construction to design a DFA that accepts L. (Draw appropriate diagrams)

Solution:

Let M_1 be the DFN such that $L(M_1) = \{w | w \text{ contain an even number of 0's}\}$, and let M_2 be the DFN such that $L(M_2) = \{w | w \text{ contain an odd number of 1's}\}$, Then:

$$M1 :=$$

 $M_2 :=$

The product construction N of M_1 and M_2 is:

This machines now accepts $L(N) = L(M_1) \cap L(M_2)$

- 5. (15 points) Give nondeterministic finite automata accepting the languages given in problem 2. Make sure that when possible, you should design simpler automata than what you have for problem 2.
 - (a) NFA accepting the set of all strings ending in 011.

(b) NFA accepting the set of all strings with "011" as a substring. Solution:

(c) NFA accepting The set of all strings such that every block of 4 consecutive symbols contains at least two 1's.Solution:

Any DFA can be thought of as a NFA. All we have to do is expand Σ to include ϵ , and build a new transition function δ_n that maps the states appropriately according to these rules

$$\delta_n : Q \times (\Sigma \cup \{\epsilon\}) \mapsto 2^Q$$
$$\delta_n(q, a) = \{\delta(q, a)\}$$
$$\delta_n(q, \epsilon) = \{q\}$$

Thus, the DFA given in solution 2 (c) is also the NFA for this problem.

6. (10 points) Give nondeterministic finite automaton accepting the following language: The set of strings in $(0 + 1)^*$ such that some two 1's are separated by a string whose length is 3i, for some $i \ge 0$. Solution:

