B501 Assignment 2 Part I Enrique Areyan

Due Date: Friday, January 27, 2012
 Due Time: 11:00pm

1. (15 points) Let M be the finite automaton $\left(Q, \Sigma, \delta, q_{0}, F\right)$. Define the function
$\delta^{*}: Q \times \Sigma^{*} \rightarrow Q$ as follows:

- $\delta^{*}(q, \varepsilon)=q$
- $\delta^{*}(q, w a)=\delta\left(\delta^{*}(q, w), a\right)$, where $w \in \Sigma^{*}$ and $a \in \Sigma$
(Recall that $L(M)=\left\{w \in \Sigma^{*} \mid \delta^{*}\left(q_{0}, w\right) \in F\right\}$, so δ^{*} is the recursive transition function of M.)
Prove that for each x and y in Σ^{*},

$$
\delta^{*}(q, x y)=\delta^{*}\left(\delta^{*}(q, x), y\right)
$$

Hint: Use structural induction.

Proof:

1. Base Case: let $w=e e$ (the empty string followed by the empty string). Then, $\delta^{*}(q, w)=\delta^{*}(q, e e)=\delta\left(\delta^{*}(q, e), e\right)=\delta(q, e)=q$ On the other hand, $\delta^{*}\left(\delta^{*}(q, e), e\right)=\delta^{*}(q, e)=q$. It holds.
2. Inductive step: let $z=x y a$, where $x, y \in \Sigma^{*}$ and $a \in \Sigma$. Then,

$$
\begin{aligned}
\delta^{*}(q, z) & =\delta^{*}(q, x y a) & & \text { definition of } \mathrm{z} \\
& =\delta\left(\delta^{*}(q, x y), a\right) & & \text { definition of } \delta^{*} \\
& =\delta\left(\delta^{*}\left(\delta^{*}(q, x), y\right), a\right) & & \text { hypothesis } \\
& =\delta^{*}\left(\delta^{*}(q, x), y a\right) & & \text { definition of } \delta^{*} . \text { Q.E.D. }
\end{aligned}
$$

2. (15 points) Give deterministic finite automata accepting the following languages over the alphabet $(0,1)$.
(a) The set of all strings ending in 011.

Solution:

(b) The set of all strings with " 011 " as a substring. Solution:

(c) The set of all strings such that every block of 4 consecutive symbols contains at least two 1's.
Solution: each state represent the memory of the previous last four characters read by the machine.

All state are finals except for $X=\{1000,0010,0100\}$.
3. (5 points) Describe in English the sets accepted by the following DFA.

Solution: The DFA accepts the empty string, any number of a's and any number of a's followed by at least one b.
4. (15 points) Let $\Sigma=\{0,1\}$, and let L be the set of strings that contain an even number of 0 's and an odd number of 1 's. Use the product construction to design a DFA that accepts L. (Draw appropriate diagrams)

Solution:

Let M_{1} be the DFN such that $L\left(M_{1}\right)=\{w \mid \mathrm{w}$ contain an even number of 0 's $\}$, and let M_{2} be the DFN such that $L\left(M_{2}\right)=\{w \mid \mathrm{w}$ contain an odd number of 1 's $\}$, Then:

$$
M 1:=\quad M_{2}:=
$$

The product construction N of M_{1} and M_{2} is:

This machines now accepts $L(N)=L\left(M_{1}\right) \cap L\left(M_{2}\right)$
5. (15 points) Give nondeterministic finite automata accepting the languages given in problem 2. Make sure that when possible, you should design simpler automata than what you have for problem 2 .
(a) NFA accepting the set of all strings ending in 011.

Solution:

(b) NFA accepting the set of all strings with " 011 " as a substring. Solution:

(c) NFA accepting The set of all strings such that every block of 4 consecutive symbols contains at least two 1's.

Solution:

Any DFA can be thought of as a NFA. All we have to do is expand Σ to include ϵ, and build a new transition function δ_{n} that maps the states appropriately according to these rules

$$
\begin{gathered}
\delta_{n}: Q \times(\Sigma \cup\{\epsilon\}) \mapsto 2^{Q} \\
\delta_{n}(q, a)=\{\delta(q, a)\} \\
\delta_{n}(q, \epsilon)=\{q\}
\end{gathered}
$$

Thus, the DFA given in solution 2 (c) is also the NFA for this problem.
6. (10 points) Give nondeterministic finite automaton accepting the following language: The set of strings in $(\mathbf{0}+\mathbf{1})^{*}$ such that some two 1's are separated by a string whose length is $3 i$, for some $i \geq 0$.

Solution:

